

Transcatheter Aortic Valve Replacement in Bicuspid Aortic Valve Stenosis

Oktay Musayev MD, FESC

Central Clinic

Baku, Azerbaijan

Prevalence of Bicuspid Aortic Valve Disease

- Bicuspid Aortic Valve disease (BAV) is a congenital defect affecting 1 to 2.0% of general population, 2 to 4 times more frequent in men (Tzemos et al. JAMA 2008; 300:1317-25.)
- Could be an heritable condition mutation of gene NOTCH1 (Garg et al. Nature 2005; 437: 270-4)
- High Frequency in patients having sAVR (62% < 70y / 38% > 80y) (Roberts et al. Circulation 2005; 111: 920-5)
- Concominant aortopathy, seen in 20% to 84% of patients with BAV (Verma S, Siu SC. N Engl J Med. 2014;370(20):1920-1929)

Sievers Classification of BAV

- Two leaflets of unequal size
- RL fusiun pattern is the most common form

Type 1 = 1 raphe

Type 2 = 2 raphes

Sievers & Schmidtke. J Thorac Cardiovasc Surg 2007; 1334266-33

Bicuspid Valve Anatomy: Challenges for TAVR

- Asymmetric Calcium
 - Most commonly fused raphe is asymmetrically calcified. Can cause valve to tilt or push lower during deployment
 - Increased risk of PVL?
- High calcium burden
 - Calcium in Bicuspid valve is metaplastic. "Senile" calcification is dysplastic/dystrophic.
 - Increased risk for stroke, pacemaker and root rupture?
- Elliptical annulus
 - More of an issue with Type 0 valves. New studies have shown Type I valves are less elliptical than we thought.
 - Larger annulus and valve sizes.
- Aortic aneurysm prevalence: 30-40%

Increased risk of paravalvular leak and other complications related to irregular expansion of the prosthetic valve

Guyton RA. J Am Coll Cardiol Intv 2016;9(8):825-827. Bauer T, et a;l. Am J Cardiol 2014;113(3):518-521. Image adapted from Valley Heart and Vasculature (an affihate of Cleveland Clinic Heart and Vascular Institute), http://valleyheartandvascular.com/thorac aneurysm-program/bicuspid-aortic-valve-(bav).aspx.

Potential mechanism of higher rate of pacemaker in BAV

(a) Aortic valve complex in a BAV Sievers 1 configuration with R-L fusion with calcium. (b) The asymmetrical TAVR expansion resulting from resistant calcific raphe and leaflet fusion may compress the non-coronary cusp toward the conduction fiber pathway along the central fibrous body.

A. Kalra et al. Structural Heart 8 (2024) 10022

Annulus-based sizing was applicable to 88% of our BAV patients

Conclusions:

Second-generation prostheses similarly reshape the aortic annulus in TAV and BAV. Prostheses keep consistent diameters from distal edge to 12 mm in TAV and BAV. Prosthesis underexpansion is constantly observed in BAV. Annularbased sizing is accurate in BAV with minimal oversizing. The intercommissural distance, 4 mm above the annulus, could be integrated in gray zones.

Circulation

Volume 141, Issue 13, 31 March 2020; Pages 1071-1079 https://doi.org/10.1161/CIRCULATIONAHA.119.040333

ORIGINAL RESEARCH ARTICLE

Outcomes of Transcatheter Aortic Valve Replacement in Patients With Bicuspid Aortic Valve Disease

A Report From the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry

(November 2011 through November 2018)

Periprocedural complications of TAVR in bicuspid aortic stenosis STS/ACC/TVT Registry 2011-2018

Periprocedural complications of TAVR in bicuspid aortic stenosis

Halim SA, Circulation 2020;141(13):1071-1079;

June 11, 2019

Association Between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke

Raj R. Makkar, MD1; Sung-Han Yoon, MD1; Martin B. Leon, MD2; et al

> Author Affiliations | Article Information

JAMA. 2019;321(22):2193-2202. doi:10.1001/jama.2019.7108

Makkar RR et al, JAMA. 2019 Jun 11;321(22):2193-2202

Bicuspid Aortic Valve Morphology and Outcomes After Transcatheter Aortic Valve Replacement

CONCLUSIONS: Outcomes of TAVR in bicuspid aortic stenosis depend on valve morphology. Calcified raphe and excess leaflet calcification were associated with increased risk of procedural complications and midterm mortality.

Yoon, S. et al. J Am Coll Cardiol. 2020 Sep 1;76(9):1018-1030.

Which device?

Early versus newer generation THVs for the treatment of bicuspid AS

Early versus newer generation THVs for the treatment of bicuspid AS

Evolut R

Balloon-expendable vs self-espanding THVs for the treatment of bicuspid AS

BEAT registry, 353 patients undergoing TAVR for bicuspid aortic stenosis with Evolut R/PRO (n=111) or Sapien 3 (n=242)

Conclusions: study confirms the feasibility of both Sapien 3 and Evolut R/PRO implantation in bicuspid aortic valve anatomy; a higher rate of moderate-severe paravalvular aortic regurgitation was observed in the Evolut R/PRO group at 1-year follow-up in the matched cohort, although patients treated with balloon-expandable valve had a higher rate of annular rupture.

INTERVENTIONS FOR VALVULAR DISEASE AND HEART FAILURE

Transcatheter aortic valve implantation with the Evolut platform for bicuspid aortic valve stenosis: the international, multicentre, prospective BIVOLUTX registry

Didier Tchétché^{1*}, MD; Francesca Ziviello², MD; Chiara De Biase¹, MD, PhD; Ole De Backer³, MD, PhD; Thomas Hovasse⁴, MD; Lionel Leroux³, MD; Anna-Sonia Petronio⁶, MD; Christophe Saint Etienne⁷, MD; Rui Campante Teles⁴, MD; Thomas Modine⁵, MD; Arnaud Sudre⁹, MD; Emmanuel Teiger¹⁰, MD, PhD; Darren Mylotte¹¹, MD; Geraud Souteyrand¹², MD; Nicolo Piazza¹³, MD; Frederic Casassus¹⁴, MD; Lars Sondergaard³, MD, PhD; Marco Angelilis⁶, MD; Thiago Nolasco⁸, MD; Saiffullah Siddiqui¹, MD; Isabella Kardys², MD, PhD; Nicolas Dumonteil¹, MD; Nicolas M. Van Mieghem², MD, PhD

Conclusions: BIVOLUTX demonstrated a favourable bioprosthetic valve performance and good clinical outcomes after TAVI with the Evolut platform in patients with bicuspid aortic stenosis. Further efforts should focus on reducing conduction disorders and neurological events.

AR: aortic regurgitation; IQR: interquartile range; PPM: patient-prosthesis mismatch; TAVI: transcatheter aortic valve implantation

Transcatheter aortic valve replacement for bicuspid aortic valve stenosis with first- and new-generation bioprostheses: A systematic review and meta-analysis

Daisuke Ueshima ^{a,1}, Luca Nai Fovino ^{a,1}, Sorin J. Brener ^b, Tommaso Fabris ^a, Andrea Scotti ^a, Alberto Daniele Giacoppo ^a, Andrea Pavei ^a, Chiara Fraccaro ^a, Massimo Napodano ^a, Giuseppe Tarantini ^{a,*}

A total of 13 studies [25–36] (including 11,032 patients, 7291 with TAV and 3741 with BAV) met our inclusion criteria for the comparison between BAV and TAV, while 7 studies [11,12,26,37–40] (including 706 patients, 367 treated with a BE, 339 with a SE valve) were available for the comparison between BE and SE in BAV.

	Bicuspid		Tricuspid						
	Event	Total	Event	Total	Odds ratio	Odds ratio	95%-CI	р	Heterogeneity I ² (%)
-day mortality					4255				
All THVs	115	3741	334	7291	+=+	1.13	[0.88; 1.46]	0.33	0
First generation THVs	34	530	221	2512	→	1.19	[0.72; 1.96]	0.49	11
New generation THVs	78	3123	90	4044		1.22	[0.68; 2.18]	0.51	0
roke									
All THVs	94	3675	137	5850	+=+	1.22	[0.89; 1.66]	0.21	0
First generation THVs	11	464	17	1071	· · · · · · · · · · · · · · · · · · ·	1.71	[0.70; 4.14]	0.24	0
New generation THVs	81	3123	93	4044	+	1.66	[0.86; 3.21]	0.13	0
w pacemaker implantatio	n								
All THVs	419	3741	1131	7291		1.09	[0.88; 1.34]	0.44	28
First generation THVs	90	530	652	2512		0.87	[0.61; 1.24]	0.45	16
New generation THVs	309	3123	346	4044		1.19	[0.97; 1.47]	0.09	39
year mortality									
All THVs	174	3501	556	5942	+++	1.02	[0.77; 1.37]	0.87	23
First generation THVs	62	402	381	2195		1.18	[0.66; 2.08]	0.58	47
New generation THVs	105	3011	107	3012	, , , , , , ,	0.85	[0.45; 1.60]	0.61	52
				8.10 0	0.25 0.60 1.0 2.0 4.0	10.0			
			Favo	ors bicuspid	Fav	ors tricuspid			

Conclusions: BAV patients treated with TAVR had similar 30-day and 1-year mortality as well as stroke and new pacemaker implantation rates compared to TAV subjects, but carried higher risk of moderate/severe PVL, conversion to surgery and device failure. Event rates significantly decreased with the use of new-generation devices, but TAVR still showed better procedural results in TAV compared to BAV.

The PARTNER 3 Bicuspid Registry forTranscatheter Aortic Valve Replacement in Low-Surgical-Risk Patients

Mathew R. Williams MD a * 😤 🖾 , Hasan Jila	ihawi MD ^a ", Raj Makkar MD ^b ,
William W. O'Neill MD ^c , Robert Guyton MD ^d	, S. Chris Malaisrie MD ^e , David L. Brown MD ^f ,
Philipp Blanke MD ^g , Jonathon A. Leipsic MD	^g , Philippe Pibarot DVM, PhD ^h ,
Rebecca T. Hahn MD ^{ij} , Martin B. Leon MD ^{ij} ,	David J. Cohen MD ^{j k} , Jeroen J. Bax MD, PhD ¹
Susheel K. Kodali MD ^I , Michael J. Mack MD ^f ,	Michael Lu PhD ^m , John G. Webb MD ^g

CONCLUSIONS Among highly select bicuspid aortic stenosis lowsurgical-risk patients without extensive raphe or subannular calcification, TAVR with the SAPIEN 3 valve demonstrated similar outcomes to a matched cohort of patients with tricuspid aortic stenosis.

TABLE 4 Clinical Outcomes in Matched Subjects

	Time Point	Bicuspid (n = 148)	Tricuspid (n = 148)	<i>P</i> Value
Death, stroke, or	30 d	10 (6.8)	7 (4.7)	0.44
rehospitalization	1 y	16 (10.9)	15 (10.2)	0.80
Death	30 d	0 (0.0)	0 (0.0)	NA
	1 y	1 (0.7)	2 (1.4)	0.58
Rehospitalization	30 d	8 (5.4)	6 (4.1)	0.58
	1 y	14 (9.6)	14 (9.5)	0.96
Stroke	30 d	2 (1.4)	2 (1.4)	0.99
	1 y	3 (2.1)	3 (2.0)	0.99
New permanent pacemaker	30 d	9 (6.1)	10 (6.8)	0.81
	1 y	10 (6.8)	11 (7.4)	0.82

Williams et al. JACC: CARDIOVASCULAR INTERVENTIONS VOL. 15, NO. 5, 2022

AZƏRBAYCAN DOKRINOLOQU CƏMIYYƏTİ

13-14-15 DECEMBER, 2024 THE RITZ-CARLTON HOTEL, BAKU

Sakurai et al

Adult: Aortic Valve

Transcatheter versus surgical aortic valve replacement for stenotic bicuspid aortic valve: Systematic review and meta-analysis

Yosuke Sakurai, MD,^a Yujiro Yokoyama, MD,^b Toshiki Kuno, MD, PhD,^c Hisato Takagi, MD, PhD,^d Amgad Mentias, MD,^e Vinod H. Thourani, MD,^f Azeem Latib, MD,^c and Tsuyoshi Kaneko, MD^g

Author	Publication year	Study period	Dataset	Adjustment
Elbadawi	2019	2012- 2016	National Inpatient Sample	PSM
Mentias	2020	2015- 2017	Medicare	PSM
Husso	2021	2008- 2017	Finn Valve Registry	PSM
Majmunder	2022	2016- 2018	Nationwide Readmission Database	PSM

Conclusions: In selected patients with severe bicuspid aortic valve stenosis, no significant differences in in-hospital mortality or stroke were observed between transcatheter aortic valve replacement and surgical aortic valve replacement. Further investigations with long-term follow-up and morphological features are warranted.

Guideline recommendations for interventions on patients with severe aortic stenosis with focus on BAV

Bicuspid aortic valve	AHA/ACC guidelines	ESC guidelines
Without aortopathy	Follow same recommendations for tricuspid-associated stenosis and/or regurgitation.	Follow same recommendations for tricuspid-associated stenosis and/or regurgitation.
	TAVR may be considered as an alternative to SAVR after consideration of patient and procedural characteristics	TAVR is not specified as potential treatment option for BAV patients.
With aortopathy	Replacement of the ascending aorta is reasonable in patients with BAV	Indication is primarily aortic valve disease:
	undergoing AVR because of severe aortic stenosis or aortic regurgitation	Replacement of aortic root or tubular ascending aorta, alongside the aortic
	when the diameter of the ascending aorta is 4.5 cm or greater if the surgery is	valve, should be considered when diameter \geq 45mm (class IIa, level of
	performed at Comprehensive Valve Centre (class IIa, level of evidence C-EO)	evidence C)
	Surgery is indicated in asymptomatic or symptomatic patients with BAV if the	Indication is primarily aortic root disease:
	diameter of the aortic root or ascending aorta is greater than 5.5 cm (class I,	Surgery should be performed in patients with BAV, who have a maximal
	level of evidence B-NR)	aortic diameter \geq 55 mm (class IIa, level of evidence C)
	Surgery is reasonable in asymptomatic patients with BAV if the diameter of	Replacement of the root or tubular ascending aorta should be considered if
	the aortic root or ascending aorta is 5.0 to 5.5 cm and an additional risk factor	diameter \geq 50mm in the presence of bicuspid aortic valve with additional risk
	for dissection is present (family history of aortic dissection or aortic growth	factors (family history of aortic dissection [or personal history of spontaneous
	rate \geq 0.5 cm per year) if the surgery is performed at Comprehensive Valve	vascular dissection], severe aortic regurgitation or mitral regurgitation,
	Centre (class IIa, level of evidence B-NR)	desire for pregnancy, systemic hypertension, and/or aortic size increase
	Surgery may be considered in asymptomatic patients with BAV if the	>3 mm/year) (class IIa, level of evidence C)
	diameter of the aortic root or ascending aorta is 5.0 to 5.5 cm and have no	
	additional risk factors and the patient is at low surgical risk and the surgery is	
	performed at Comprehensive Valve Centre (class IIb, level of evidence B-NR)	

Abbreviations: ACC, American College of Cardiology; AHA, American Heart Association; AVR, aortic valve replacement; BAV, bicuspid aortic valve; ESC, European Society of Cardiology; SAVR, surgical aortic valve replacement; TAVR, transcatheter aortic valve replacement.

Take home message

- Bicuspid aortic stenosis carries potential technical challenges for TAVR.
- The BAV patient group is no longer eligible for TAVI exclusion.
- The result of TAVI in the BAV group is comparable to that of the TAV TAVI patient group due to the development of the valve and the experience of the practitioners.
- Patients in the BAV TAVI group are lower in age than those in the TAV TAVI group, and the condition itself is good, so it is not easy to perform the procedure, but the future plan needs to be devised more carefully.
- Adverse events of TAVR in BAV significantly decreased with new-generation THVs.

Thank you for attention!

